Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 18(6): 2639-2651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414766

RESUMO

Due to increased drug and radiation tolerance, there is an urgent need to develop novel anticancer agents. In our previous study, we performed a series of structural modifications of ursolic acid (UA), a natural product of pentacyclic triterpenes, and found UA232, a derivative with stronger anti-tumor activity. In vitro experiments showed that UA232 inhibited proliferation, induced G0/G1 arrest, and promoted apoptosis in human breast cancer and cervical cancer cells. Mechanistic studies revealed that UA232 promoted apoptosis and induced protective autophagy via the protein kinase R-like endoplasmic reticulum kinase/activating transcription factor 4/C/EBP homologous protein-mediated endoplasmic reticulum stress. In addition, we also found that UA232 induced lysosomal biogenesis, increased lysosomal membrane permeability, promoted lysosomal protease release, and led to lysosome-dependent cell death. Furthermore, UA232 suppressed tumor growth in a mouse xenograft model. In conclusion, our study revealed that UA232 exerts multiple pharmacological effects against breast and cervical cancers by simultaneously triggering endoplasmic reticulum stress and lysosomal dysfunction. Thus, UA232 may be a promising drug candidate for cancer treatment.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Lisossomos , Camundongos , Triterpenos , Ácido Ursólico
2.
Cancer Lett ; 530: 100-109, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065237

RESUMO

Acidic nucleoplasmic DNA binding protein 1 (AND-1, also known as WD repeat and HMG-box DNA-binding protein 1, WDHD1) plays an important role in DNA replication and repair, but the relationship between AND-1 and radiosensitivity is not well understood. This research explored the impact of AND-1 on the radiosensitivity of non-small cell lung cancer (NSCLC) for the first time. NSCLC cells were treated with AND-1 siRNA or a new AND-1 inhibitor, CH-3, and clonogenic survival assay was used to characterize cell radiosensitivity. Cell cycle and apoptosis were examined by flow cytometry. DNA damage was detected by comet assay, immunofluorescence, and homologous recombination (HR) repair assay. Finally, the radiosensitization effect of CH-3 was investigated in vivo in a xenograft tumor model. The results showed that AND-1 inhibition significantly increased the radiosensitivity of NSCLC cells. Mechanistically, AND-1 inhibitor (CH-3) induced G2/M phase arrest by regulating the ATM signaling pathway and enhanced irradiation-induced DNA damage by inhibiting the DNA HR repair pathway. CH-3 enhanced the radiosensitivity of NSCLC cells in vivo. The development of radiosensitizers that target AND-1 may provide an alternative strategy to inhibit NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/genética , Células A549 , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Reparo do DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Tolerância a Radiação/genética
3.
Nat Chem Biol ; 18(2): 142-151, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34903851

RESUMO

Protein lysine 2-hydroxyisobutyrylation (Khib) has recently been shown to play a critical role in the regulation of cellular processes. However, the mechanism and functional consequence of Khib in prokaryotes remain unclear. Here we report that TmcA, an RNA acetyltransferase, functions as a lysine 2-hydroxyisobutyryltransferase in the regulation of transcription. We show that TmcA can effectively catalyze Khib both in vitro and intracellularly, and that R502 is a key site for the Khib catalytic activity of TmcA. Using quantitative proteomics, we identified 467 endogenous candidates targeted by TmcA for Khib in Escherichia coli. Interestingly, we demonstrate that TmcA can specifically modulate the DNA-binding activity of H-NS, a nucleoid-associated protein, by catalysis of Khib at K121. Furthermore, this TmcA-targeted Khib regulates transcription of acid-resistance genes and enhances E. coli survival under acid stress. Our study reveals transcription regulation mediated by TmcA-catalyzed Khib for bacterial acid resistance.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Acetiltransferases/genética , Ácidos , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estresse Fisiológico , Transcrição Gênica , Transcriptoma
4.
Sci Rep ; 11(1): 24328, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934053

RESUMO

The phosphate group functionalized metal-organic frameworks (MOFs) as the adsorbent for removal of U(VI) from aqueous solution still suffer from low adsorption efficiency, due to the low grafting rate of groups into the skeleton structure. Herein, a novel phosphate group functionalized metal-organic framework nanoparticles (denoted as Fe3O4@SiO2@UiO-66-TPP NPs) designed and prepared by the chelation between Zr and phytic acid, showing fast adsorption rate and outstanding selectivity in aqueous media including 10 coexisting ions. The Fe3O4@SiO2@UiO-66-TPP was properly characterized by TEM, FT-IR, BET, VSM and Zeta potential measurement. The removal performance of Fe3O4@SiO2@UiO-66-TPP for U(VI) was investigated systematically using batch experiments under different conditions, including solution pH, incubation time, temperature and initial U(VI) concentration. The adsorption kinetics, isotherm, selectivity studies revealed that Fe3O4@SiO2@UiO-66-TPP NPs possess fast adsorption rates (approximately 15 min to reach equilibrium), high adsorption capacities (307.8 mg/g) and outstanding selectivity (Su = 94.4%) towards U(VI), which in terms of performance are much better than most of the other magnetic adsorbents. Furthermore, the adsorbent could be reused for U(VI) removal without obvious loss of adsorption capacity after five consecutive cycles. The research work provides a novel strategy to assemble phosphate group-functionalized MOFs.

5.
Future Med Chem ; 13(9): 817-837, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33845591

RESUMO

Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.


Assuntos
Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/farmacologia , Necrose/tratamento farmacológico , Oximas/química , Oximas/farmacologia , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Transdução de Sinais
6.
Pharm Biol ; 58(1): 707-715, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32726164

RESUMO

CONTEXT: Ursolic acid (UA), a natural product, shows a broad spectrum of anticancer effects. However, the poor bioavailability and efficacy of UA limit its clinical application. OBJECTIVE: We developed novel analogues of UA with enhanced antitumor activities by the extensive chemical modification of UA. MATERIALS AND METHODS: We developed multiple compounds by structural modification of UA, and found that UA232 had stronger activity than UA. The effects of UA232 (0-50 µM) on inhibiting the proliferation of A549 and H460 cells were determined by CCK-8 for 24, 48, or 72 h. The proapoptotic effect of UA232 was analyzed by microscopy and flow cytometry, and the potential signal pathway affected by UA232 was further validated by Western blotting and flow cytometry. RESULTS: Compared with UA, UA232 showed a stronger ability to inhibit the proliferation of lung cancer cells (IC50 = 5.4-6.1 µM for A549 and 3.9-5.7 µM for H460 cells). UA232 could induce not only cell cycle arrest in the G0/G1 phase but also apoptosis in both A549 and H460 cells. The treatment of UA232 could lead to an increase of CHOP expression rather than an increase in Bax or caspase-8, indicating that the apoptosis induced by UA232 was correlated with the endoplasmic reticulum stress (ER stress) pathway. Treatment with the ER stress-specific inhibitor, 4-PBA, decreased the ability of UA232 to induce apoptosis in A549 and H460 cells. CONCLUSION: UA232 induced apoptosis through the ER stress pathway, and showed stronger growth-inhibitory effects in A549 and H460 cells compared to UA, which may be a potential anticancer drug to suppress the proliferation of lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos/farmacologia , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Triterpenos/administração & dosagem , Triterpenos/química , Ácido Ursólico
7.
Sci Rep ; 10(1): 71, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919391

RESUMO

The development of methods to effectively capture N-glycopeptides from the complex biological samples is crucial to N-glycoproteome profiling. Herein, the hydrophilic chitosan-functionalized magnetic graphene nanocomposites (denoted as Fe3O4-GO@PDA-Chitosan) were designed and synthesized via a simple two-step modification (dopamine self-polymerization and Michael addition). The Fe3O4-GO@PDA-Chitosan nanocomposites exhibited good performances with low detection limit (0.4 fmol·µL-1), good selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a molar ration of 10:1), good repeatability (4 times), high binding capacity (75 mg·g-1). Moreover, Fe3O4-GO@PDA-Chitosan nanocomposites were further utilized to selectively enrich glycopeptides from human renal mesangial cell (HRMC, 200 µg) tryptic digest, and 393 N-linked glycopeptides, representing 195 different glycoproteins and 458 glycosylation sites were identified. This study provides a feasible strategy for the surface functionalized novel materials for isolation and enrichment of N-glycopeptides.


Assuntos
Dopamina/química , Glicopeptídeos/análise , Grafite/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Linhagem Celular , Quitosana/química , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Óxido Ferroso-Férrico/química , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Expert Opin Investig Drugs ; 28(10): 917-930, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31430206

RESUMO

Introduction: Acetyl-CoA Carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism. For many years, ACC inhibitors have gained great attention for developing therapeutics for various human diseases including microbial infections, metabolic syndrome, obesity, diabetes, and cancer. Areas covered: We present a comprehensive review and update of ACC inhibitors. We look at the current advance of ACC inhibitors in clinical studies and the implications in drug discovery. We searched ScienceDirect ( https://www.sciencedirect.com/ ), ACS ( https://pubs.acs.org/ ), Wiley ( https://onlinelibrary.wiley.com/ ), NCBI ( https://www.ncbi.nlm.nih.gov/ ) and World Health Organization ( https://www.who.int/ ). The keywords used were Acetyl-CoA Carboxylase, lipid, inhibitors and metabolic syndrome. All documents were published before June 2019. Expert opinion: The key regulatory role of ACC in fatty acid synthesis and oxidation pathways makes it an attractive target for various metabolic diseases. In particular, the combination of ACC inhibitors with other drugs is a new strategy for the treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Expanding the clinical indications for ACC inhibitors will be one of the hot directions in the future. It is also worth looking forward to exploring safe and efficient inhibitors that act on the BC domain of ACC.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Síndrome Metabólica/tratamento farmacológico , Acetil-CoA Carboxilase/metabolismo , Animais , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/efeitos adversos , Ácidos Graxos/metabolismo , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/fisiopatologia , Síndrome Metabólica/fisiopatologia
9.
ACS Omega ; 3(2): 1572-1580, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30023808

RESUMO

Efficient enrichment glycoproteins/glycopeptides from complex biological solutions are very important in the biomedical sciences, in particular biomarker research. In this work, the high hydrophilic polyethylenimine conjugated polymaltose polymer brushes functionalized magnetic Fe3O4 nanoparticles (NPs) denoted as Fe3O4-PEI-pMaltose were designed and synthesized via a simple two-step modification. The obtained superhydrophilic Fe3O4-PEI-pMaltose NPs displayed outstanding advantages in the enrichment of N-linked glycopeptides, including high selectivity (1:100, mass ratios of HRP and bovine serum albumin (BSA) digest), low detection limit (10 fmol), large binding capacity (200 mg/g), and high enrichment recovery (above 85%). The above-mentioned excellent performance of novel Fe3O4-PEI-pMaltose NPs was attributed to graft of maltose polymer brushes and efficient assembly strategy. Moreover, Fe3O4-PEI-pMaltose NPs were further utilized to selectively enrich glycopeptides from human renal mesangial cell (HRMC, 200 µg) tryptic digest, and 449 N-linked glycopeptides, representing 323 different glycoproteins and 476 glycosylation sites, were identified. It was expected that the as-synthesized Fe3O4-PEI-pMaltose NPs, possessing excellent performance (high binding capacity, good selectivity, low detection limit, high enrichment recovery, and easy magnetic separation) coupled to a facile preparation procedure, have a huge potential in N-glycosylation proteome analysis of complex biological samples.

10.
ACS Appl Mater Interfaces ; 7(44): 24670-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26479949

RESUMO

The development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication. Second, the hydrophilic maltose-functionalized Fe3O4 (Fe3O4-DA-Maltose) NPs were obtained via copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The morphology, structure, and composition of Fe3O4-DA-Maltose NPs were investigated by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), and vibrating sample magnetometer (VSM). Meanwhile, hydrophilicity of the obtained NPs was evaluated by water contact angle measurement. The hydrophilic Fe3O4-DA-Maltose NPs were applied in isolation and enrichment of glycopeptides from horseradish peroxidase (HRP), immunoglobulin (IgG) digests. The MALDI-TOF mass spectrometric analysis indicated that the novel NPs exhibited high detection sensitivity in enrichment from HRP digests at concentration as low as 0.05 ng µL(-1), a large binding capacity up to 43 mg g(-1), and good recovery for glycopeptides enrichment (85-110%). Moreover, the Fe3O4-DA-Maltose NPs were applied to enrich glycopeptides from human renal mesangial cells (HRMC) for identification of N-glycosylation sites. Finally, we identified 115 different N-linked glycopeptides, representing 93 gene products and 124 glycosylation sites in HRMC.


Assuntos
Química Click/métodos , Dopamina/química , Compostos Férricos/química , Glicopeptídeos/química , Maltose/química , Catecóis/química , Glicosilação , Peroxidase do Rábano Silvestre/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/química , Rim/patologia , Ligantes , Magnetismo , Nanopartículas de Magnetita/química , Células Mesangiais/patologia , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Sonicação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...